


DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

I 1,11





DVI pages consist of a stream of low level typesetting command•sI], such as 'mtmhar-
acter n from the current font at the current x and yP, 'move horizontally by z unite, and
6switch to font f.' Dvitool's read-page routine iterates from the SOP (beginning of page)
command to the EOP command, painting characters onto an internal buffer. Dvltool's fonts
contain the actual raster images of the characters, so character painting is done with raster
operations. The arithmetic used to round from WFX's infintessimal scaled points' to pixels
is done very carefully to insure a faithful representation of the page. After the entire page
has been built, the visible portion of the page is painted onto the user's window in one
raster operation.

1.3 Page Scaling

The image dvitool presents of the DVI page is scaled up 1.45 times. When dvitool is made
as big as the screen will allow, the full width of the page and about 70% of the height of the
page are visible. It would have been preferable not to have scaled the page up at all so the
full page would have been visible s but the SUN screen doesn't have enough resolution. At
the SUN's resolution (80 dots per inch) a 1.45X magnification is close to the lower bound
of usability. More concretely, without the scale facter, a point would map to 1.1 pixels 4.
The longest dimension of characters in ten point fonts would thus have to be represented
in w 11 pixels. With the 1.45 scale factor, 16 pixels' are available in each dimension. Since
these are not fixed width fonts, any given character probably is not actually 16 pixels high
or wide; 16 pixels is just the upper bound for 10 point fonts at a 1.45 scale factor.

1.4 Intra-page Movement

Once the page is painted, the user can scroll around arbitrary amounts either vertically
or horizontally. The default iction is to scroll one third of the window size. This works
out well enough for horizontal scrolling, but a better scheme for vertical scrolling would be
to place the lowest visible line at the top of the window, much like a text editor scrolls.
There are also commands to position on any edge of the page, so one keystroke positions
the bottom of the page at the bottom of the window. Recall that the complete DVI page
has already been read and painted on an internal buffer, so new views of the same page are
instantaneous.

"'points' are dimensions used to describe fonts, kern sad the like. I inch = 73.2S points; 1 point n 1"
scaled points. Thus 1 Inch w 4.7 million scaled points.

*The SUN screen has 900 vertical pixoh ad 1100 borbontal pinol. 0)/60 dots per inch 11.25 o a
fll 8.S by 11 sheet of paper would be viibl with no scale factor.

'SO pixel per Inch /72.27 points per inch = 1.106 pine per point.
'1.45 * 80/72.27 = 1.60S

2



1.5 Inter-page Movement

To move back and forth acros pages, dvitool must read and paint a new image so there is a
short delay, typically 4 seconds in our environment. Pages are cached, however, so that once
a page has been viewed, viewing it again is nearly instantaneous. The memory penalty for
page caching is about 6K bytes per page, which is not too prohibitive for SUN workstations
with 4 megabytes of memory. The user can limit the number of cached pages to control
thrashing, and dvitool internally sets the limit whenever it cannot obtain enough memory
to cache another pagp.

1.6 Page Searches

. T i alin of WIB 10 o wim ab s sto ith each page in the DVI file. Most
IkX snacro packages store quantities in these 10 variables which correspond to the logical
struAure of the document, such as chapter or section numbers. The logical (X asigned)
page number is usually stored in \count0. Dvltool has two notions of paep numbers: the
logical page number which corresponds to the 10 Vcount values, and the physical page
number which corresponds to the physical order of the pages in the DVI file. In addition
to physical page searches, dvltool has "wildcard' logical page searches. The 'match
anything' character (o) can be used for any of the 10 \count fields. Users who know how
to correlate the information in the \cout variables can pag through the document using
it's logical structure, for example, to go to the first page of chapter 4. Dvitool displays
the value of all of the \count variables on the status line for each pae,s so the user can
see how the \count variables are used. Commands also exist to view the first page, the
last page, or the page at any offset from the current page. The movement commands are
reminiscent of a text editor.

1.7 Magnification

Global magnification has been implemented in dvitool. WJX's \zagnification macro
magnifies all dimensions unles they are specified in 'true' diu.ensions. TEX keeps \dsize
and \vsizs in true points, so DVI pages are usually 8.5 by 11 inchs, regardless of the \zag-
step used. DvTtool's magnification, an the other band, is global. It simply magnifies the
entire page. There are 6 steps available, corresponding to T'1Xs 6 \sagsteps. Discrete
seps of magnification were implemented rather than a continuous, spectrum because ad-
ditional magnification steps require additional fonts. Dvitool's fonts already require 1.4
megabytes of disk space.

'Tbb ba% quite true. Tang mom we eided.



1.8 DVI information

Dvitool can also report information about the DVI image, though this capability is limited.
DVI files were designed to be a compact representation of a typeset page. There isn't a lot
of extraneous information in them, so there isn't much that dvitool can report. Perhaps
the most useful piece of reportable information is the font in which a character is set. Even
the font name is of limited usefulness, however, because the user has to correlate the font
name in the W document-which may have gone through arbitrary macro expansion-to
dvitool's name for the font. For example, W users in our environment have to know
that 71iX uses aaitt for italic fonts obtained with the \it macro. JAFXJ6] users have to
correlate anitt with emphasized text (\on) as well. This is an example of the more general
problem of how to map from one representation of an object to another. Dvttool reports
wbbit i m bd do l er to b- dom hrnefina

2 User Interface

The user interface to dvitool was the subject of a number of experiments. The SUN
window environment[l] offers many different ways to invoke commands. We finally decided
on two: keystrokes and menus. These were chosen because we found that novice users of
dvitool expected to use the mouse to perform commands in a window environment, while
advanced users found the menus slow and cumbersome. Dvitool provides both so it is both
easy to learn for the novice and responsive to the expert. Clues are provided to aid the
user in the transition from novice to expert. For example, all of the pop-up menu entries
also contain the matching keystroke command. Another clue we provide is a help facility
which is itself a DVI file. The help file teaches users how to use dvitool as they read it.
We provide the 71p) source for the help DVI file so individual sites can customize the help
facility.

Expert users who do not need the visual prompting of menus prefer the faster keystroke
commands, so dvitool provides them. Experts can also redefine the key bindings to
make dvitool look like their favorite flavor of editor. This feature is particulary important
because users frequently switch from an editor containing TFX source to dvitool and back.

We also considered having abuttons as our primary user interface. Buttons are fixed
areas of window real estate that the user points to and clicks on with the mouse to invoke
a command. They differ from menus in that menus pop-up; they -are visible only when
requested. Buttons were rejected in favor of keyboard commands for two reasons: 1) they
require screen real estate which is better utilized to display the DVI page; and 2) because
buttons are mouse based and most editors are keyboard based, moving from editor to
dvitool would require changing from keyboard to mouse. Advanced users find the change
of input device slow and annoying. Buttons may find their way into dvitool when mouse

4



I

based editors become more readily available.

3 Portability

Dvitool was developed on SUN hardware and runs under their proprietary window system.
Some care has been taken to isolate the system dependent parts of the code, but any
program which must deal intimately with a non-standardized graphics interface is inherently
not very portable. Dvitool is typical in this respect. We expect to begin work on a port
to the X window system[4] son.

4 texdvi

Texdvi is a companion program for dvitool which in one step runs TEX and previews the
resulting DVI file with dvitool. Texdvl is mart enough to preview the DVI file only if it
was changed by TF X. In addition, if there is a dvitool running, texdvi will mend a request
to the running dvitool to preview the DVI file rather than start up another dvltool to
do the job. Texdvl is a simple but useful means of automating the process of running TEX
and previewing the results.

5 Future Directions

Over time, the user interface to dvitool has become more editor-like. Since it is possible,
and indeed desirable, to have both a text editor and dvitool on the screen at the same
time, a number of dvitool's features are customizable so it can be used with a wide range
of text editors. We expect this trend to continue. Currently planned addtions to dvitool
include negative magnification (shrinking), better vertical scrolling as described earlier, and
a word search facility.

The word mach facility will need to provide some way to map from ASCII to the DVI
representation. In particular, ligatures present problems. At the DVI level, ligatures such as
the two characters ff" are a single character. A compile time translation table could do the
mapping, but that solution is necessarily dependent on external and potentially changeable
information.

Another problem is mathematical text. What pattern would the user type in ASCII
to search for zt, for example? The obvious solution of having dvitool recognize the TI.X
syntax for that expression implies that dvitool would have to be able to parse the TEX
language which is a task far beyond its scope.

A related problem also rims from the problem of mapping ASCII to a larger set of
characters. Some of the symbol fonts have non-letter characters (e.g. m) in the same



positions as letters in character fonts. Since matching is done on the character index in
the font, this suggests that a naive search facility might incorrectly match 04 when the user
had requested an ASCII character. We expect that the search facility will simply ignore
characters set in unknown fonts. This is an area of ongoing research.

6 Conclusions

Dvttool has grown to be a very useful tool for writing TE nical documents. It doesn't
supplant editing with hard copy and a red pen, but it dqoe allow iterations through the
write-l X-revise cycle without resorting to hard copy. It is expected that much of

essab lia md vdwE *sand isn the display part of A [li(12].

References

[1] SunView Prorammer'. Guide, Release A of 17. Sun Microsystems, Mountain View,
California, February 1986.

[21 Peehong Chen, John Coker, Michael A. Harrison, Jeffrey W. McCarrell, and Steve
Procter. The bRlkX document preparation environment. In Preparation.

[3] David Fuchs. Device independent file format. TUGBoat, 3(2):14-19, October 1982.

[4] Jim Gettys and Ron Newman. Xib - C Language X Interface: Version 9. MIT Project

Athena, Cambridge, Massachusetts, 1985.

15] Donald E. Knuth. The 2)Y Book. 1984.

[6] Leslie Lamport. bT9B : A Document Preparation System. Ueer's Guide end Reference
Manual 1986.

6

1


